A lot more details for mathematics anyone: Getting way more specific, we will use the proportion off fits so you can swipes correct, parse any zeros throughout the numerator or perhaps the denominator to just one (important for promoting genuine-cherished journalarithms), and then do the pure logarithm for the value. This figure alone will never be particularly interpretable, however the relative full manner will be.
bentinder = bentinder %>% mutate(swipe_right_speed = (likes / (likes+passes))) %>% mutate(match_rate = log( ifelse(matches==0,1,matches) / ifelse(likes==0,1,likes))) rates = bentinder %>% look for(big date,swipe_right_rate https://kissbridesdate.com/fr/blog/sites-et-applications-de-rencontres-indiennes/,match_rate) match_rate_plot = ggplot(rates) + geom_part(size=0.2,alpha=0.5,aes(date,match_rate)) + geom_easy(aes(date,match_rate),color=tinder_pink,size=2,se=False) + geom_vline(xintercept=date('2016-09-24'),color='blue',size=1) +geom_vline(xintercept=date('2019-08-01'),color='blue',size=1) + annotate('text',x=ymd('2016-01-01'),y=-0.5,label='Pittsburgh',color='blue',hjust=1) + annotate('text',x=ymd('2018-02-26'),y=-0.5,label='Philadelphia',color='blue',hjust=0.5) + annotate('text',x=ymd('2019-08-01'),y=-0.5,label='NYC',color='blue',hjust=-.